RUTGERS

School of Environmental and Biological Sciences

OLFACTORY CUES AND CHEMICAL CONTROL

Cesar Rodriguez-Saona
Blueberry/Cranberry Entomologist

RUTGERS School of Environmental and Biological Sciences

The Problem

- Spotted Wing Drosophila (SWD)-New invasive pest from Asia.
- First detected in California in 2008. In Northeast in 2011.
- Multiple hosts soft-skinned fruits (berries).
- Attacks healthy ripening fruit.
 - Early detection critical for management.

Current Monitoring

Baits

Yeast

Sugar-Yeast

Apple Cider Vinegar (ACV)

ACV+Wine

- Variable Efficacy
 - Not good predictors of infestation
 - Not early enough warning

and Biological Sciences

Monitoring -Challenges

- Baits based on fermentation products.
- Female flies seek healthy fruit for oviposition.
- Chemical cues involved in host-finding behavior are unknown.
- Identify a lure for easy early detection.

Objectives

Develop a better attractive lure for early detection of SWD.

- Determine the behavioral responses of SWD to fruit extracts.
- Identify volatile emissions.
- Identify
 electrophysiologically active compounds.

John Abraham – Free University Bolzano (Italy)

Aijun Zhang - USDA-ARS

Materials & Methods

Extract Fruit Juices

Test Extract
Attractiveness

Fruit Extract vs Control

Fruit Extracts vs Control

Materials & Methods

Collect Fruit Volatiles

Identify Volatiles

Volatile Compounds

	Compounds	Blueberry	Cherry	Raspberry	Strawberry
	ethyl acetate	-	-	-	+
	acetic acid	-	-	-	+
	hexanal	-	-	+	+
	2-hexanol	+	+	+	+
	E-2-hexenal	+	+	-	-
	2-heptanol	-	-	+	-
	Z-3-hexenyl alcohol	+	-	+	-
	hexyl alcohol	-	-	+	-
	2-butoxy ethanol	-	-	+	+
	Z-3-hexenyl acetate	-	+	+	+
	benzaldehyde	+	+	+	+
	linalool	+	+	+	+
	nonanal	+	+	+	+
	decanal	+	+	-	+

Methods: EAG

Antennal Response to Fruit Extracts

RUTGERS School of Environmental and Biological Sciences

EAG Results

RUTGERS School of Environmental and Biological Sciences

GC-EAD

• GC-EAD responses to fruit Volatiles

GC-EAD Results

Lab Bioassay

Choice Tests - Blends

Management - Challenges

- Limited chemical control options of few classes (rotation).
- Restrictions based on Pre-Harvest Intervals (PHIs) and Maximum Residue Limits (MRLs) or tolerances.
- Need of an integrated management approach.

Semi-Field Experiment

- Insecticides applied to single bushes using an R&D backpack sprayer.
- 8 insecticides + control
 With and Without Sugar
 (2lbs per 100 gal).
- Residue efficacy tested:
 1 & 3 days after treatment.

Semi-Field Experiment

- Branch with approx 20 berries in 32oz deli container.
- Checked adult mortality at 24 & 72 hrs.
- Checked larval numbers with salt extraction method after 10 d.

TGERS

Fly Mortality 1 DAT

Larvae in Fruit

Conclusions

- SWD is attracted to volatiles from fruit extracts.
- Raspberry and strawberry volatiles are very attractive and elicit strong EAG responses.
- 11 antennally-active compounds identified from raspberries that are attractive to SWD.
- Sugars (phagostimulants) increase efficacy of insecticides against SWD.
- <u>Future Directions:</u> Develop attract&kill approaches with attractant+phagostimulant+toxin

Acknowledgements

- USDA NE-IPM Grants
- Specialty Crop Block Grant
- New Jersey Blueberry Council
- DuPont, Dow Agrosciences, UPI, Bayer, Valent
- 2 technicians (Rob & Vera)
- 4 summer workers
- 2 visiting scientists (Italy & Spain)

